CONTENTS

CHAPTER 1 LEGAL AND ETHICAL CONSIDERATIONS IN THE USE OF IMMobilIZING DRUGS, USING ZIMBABWE AND SOUTH AFRICA AS EXAMPLES

1.1 General control of drugs 1
1.2 Licensing the use of game capture drugs 2
1.3 Naming of drugs 4
1.4 Records of drug use in Zimbabwe 4
1.5 Additional legal considerations in Zimbabwe 5
1.6 South African Veterinary Council’s Policy on the use of immobilizing agents 7
1.7 Ethical considerations in the use of immobilizing agents for wildlife management 10
 1.7.1 Definition of ethics 10
 1.7.2 How to be ethical in wildlife immobilization 10
1.8 Conclusions 11

CHAPTER 2 BASIC PHYSIOLOGY

2.1 The cell 13
2.2 The physiology of the nervous system 15
 2.2.1 Classification of the different functions of the nervous system 15
 2.2.2 Functional anatomy 16
 2.2.3 The function of the sympathetic nervous system 22
 2.2.4 The function of the parasympathetic nervous system 22
2.3 The cardiovascular system 23
 2.3.1 Functional anatomy 23
 2.3.2 The heart 25
 2.3.3 Systemic circulation 28
2.4 Respiratory system 30
 2.4.1 Functional anatomy 30
 2.4.2 Ventilation of the lungs – inspiration and expiration 31
 2.4.3 Gaseous exchange 32
 2.4.4 The transport of oxygen and carbon dioxide in the blood 33
 2.4.5 Regulation of respiration 34
 2.4.6 The importance of respiratory physiology in the immobilization of wildlife 35
2.5 Digestion 36
2.6 Glossary 37

CHAPTER 3 BASIC PHARMACOLOGY

3.1 Pharmacokinetics: What the body does to a drug 41
 3.1.1 Absorption 42
 3.1.2 Distribution 43
 3.1.3 Metabolism 44
 3.1.4 Excretion 44
3.2 Pharmacodynamics: What a drug does to the body 44
3.3 Drug dosage 46
3.4 Drug stability, formulation and calculations 47
 3.4.1 Drug stability 47
 3.4.2 Drug formulation 47
 3.4.3 Calculations 48
CHAPTER 4 APPLIED PHARMACOLOGY 53
4.1 Attributes of an ideal immobilizing drug 53
4.2 General – mode of action 54
4.3 Pharmacology of opioids
 4.3.1 Potency 54
 4.3.2 Induction 55
 4.3.3 Side effects 56
 4.3.4 Reversal 57
 4.3.5 Safety 57
4.4 Opioid drugs 57
4.5 Drug reversal – antagonists
 4.5.1 The pharmacology of opioid antagonists 60
4.6 Opioid antagonists 61
4.7 Pharmacology of the cyclohexylamines 63
4.8 Neuromuscular blockers 65
4.9 Tranquilizers and sedatives
 4.9.1 Adrenergic neurotransmission 68
4.10 Pharmacology of tranquilizers 69
4.11 Butyrophenone derivatives 70
4.12 Long-acting tranquilizers and others 71
4.13 Pharmacology of sedatives
 4.13.1 Diazepam 73
 4.13.2 Midazolam 74
 4.13.3 Benzodiazepine antagonists 75
4.14 Imidazole group: α-2 agonists 75
4.15 α-2 antagonists 77
4.16 Other drugs 78
Summary of immobilizing drugs and their effects 80

CHAPTER 5 STRESS AND CAPTURE-RELATED DEATH 81
5.1 Pathology 81
5.2 Trauma (injury) 82
5.3 Respiratory failure 82
5.4 Hyperthermia 82
5.5 Capture myopathy 83
5.6 Bloat 84
5.7 Aspiration 84
5.8 Stress
 5.8.1 The stage of alarm 85
 5.8.2 The stage of resistance or adaptation 86
 5.8.3 The stage of exhaustion 86
5.9 Shock 86
5.10 Maladaptation 87
5.11 The eleven commandments to prevent and reduce stress 88
CHAPTER 6 SAFETY AND FIRST AID IN THE FIELD – WEAPONS, DRUGS AND ANIMALS

6.1 Firearm and rifle range safety
 6.1.1 Rifle range rules

6.2 Prevention and management of capture drug accidents
 6.2.1 Precautions for prevention of capture drug accidents
 6.2.2 First-aid kit
 6.2.3 Emergency kit
 6.2.4 Management of capture drug accidents
 6.2.5 Stimulants
 6.2.6 Summary – response in an emergency

6.3 Specific response to particular capture drugs
 6.3.1 Opioids (narcotics)
 6.3.2 Neuromuscular blocking agents
 6.3.3 Other drugs
 6.3.4 Tranquillizers, hypnotics and sedatives

6.4 Animal safety

CHAPTER 7 PRINCIPLES OF CHEMICAL AND PHYSICAL RESTRAINT OF WILD ANIMALS

7.1 Planning a capture operation
 7.1.1 Objective

7.2 Chemical restraint
 7.2.1 Factors to consider
 7.2.2 Common causes of failures or adverse effects of chemical restraint

7.3 Physical restraint
 7.3.1 Physical force
 7.3.2 Confinement
 7.3.3 Ropes
 7.3.4 Nets
 7.3.5 The net gun
 7.3.6 Physical barriers

7.4 Animal safety

7.5 Reflection

References

CHAPTER 8 HELICOPTER AND FIXED-WING USE IN WILDLIFE WORK

8.1 Choices: makes and models
 8.1.1 Helicopter – Robinsons
 8.1.2 Helicopter – Hughes
 8.1.3 Helicopter – Bell Jet Ranger (206 series)
 8.1.4 Helicopter – Squirrel (Eurocopter AS350 B1, B2 and B3)
 8.1.5 Other helicopters
 8.1.6 Fixed-winged aircraft

8.2 Basic helicopter theory and safety
 8.2.1 Factors affecting helicopter performance
 8.2.2 Understanding the height vs. velocity graph or dead man’s curve
 8.2.3 General safety around the helicopter

8.3 Planning and practical applications
 8.3.1 Overall planning
 8.3.2 In-field planning

8.4 Summary and key points
CHAPTER 9 CHEMICAL IMMOBILIZATION – INDIVIDUAL SPECIES REQUIREMENTS

9.1 General capture information on ungulates
9.1.1 Pharmacological principles
9.1.2 Darting principles

9.2 Large ungulates
9.2.1 Bontebok (Damaliscus pygargus dorcas) and blesbok (D. p. phillipsi)
9.2.2 African buffalo, savannah (Syncerus c. caffer) and forest buffalo (Syncerus c. nanus)
9.2.3 Bushbuck (Tragelaphus scriptus)
9.2.4a Eland, common (Taurotragus oryx)
9.2.4b Eland, Lord Derby or giant (Taurotragus derbianus derbianus/gigas)
9.2.5 Gemsbok (Oryx gazella)
9.2.6 Giraffe (Giraffa camelopardalis)
9.2.7 Hartebeest, red (Alcelaphus buselaphus)
9.2.8 Hartebeest, Lichtenstein’s (Sigmoceros lichtensteinii)
9.2.9 Hirola (Beatragus hunteri)
9.2.10 Impala (Aepyceros melampus) and black-faced impala (A. m. petersi)
9.2.11 Kob, Ugandan (Kobus kob thomasi) and white-eared (Kobus kob leucotis)
9.2.12 Kudu, greater (Tragelaphus strepsiceros) and lesser (Tragelaphus imberbis)
9.2.13 Lechwe (Kobus leche)
9.2.14a Nyala (Tragelaphus angasii)
9.2.14b Mountain nyala (Tragelaphus buxtonii)
9.2.15 Reedbuck, common (Redunca arundinum)
9.2.16 Reedbuck, mountain (Redunca fulvorufula)
9.2.17 Rhebok, grey (Pelea capreolus)
9.2.18 Roan (Hippotragus equinus)
9.2.19 Sable (Hippotragus niger)
9.2.20 Springbok (Antidorcas marsupialis)
9.2.21 Tsessebe (Damaliscus lunatus) and tiang (tiang hartebeest – Damaliscus lunatus tiang)
9.2.22 Waterbuck (Kobus ellipsiprymnus)
9.2.23 Wildebeest, black (Connochaetes gnou)
9.2.24 Wildebeest, blue (Connochaetes taurinus)
9.2.25 Zebra

9.3 Smaller ungulates
9.3.1 Duiker, blue (Philantomba monticola)
9.3.2 Duiker, red (Cephalophus natalensis)
9.3.3 Dik-dik (Madoqua kirki)
9.3.4 Grysbok, Cape (Raphicerus melanotis)
9.3.5 Grysbok, Sharpe’s (Raphicerus sharpei)
9.3.6 Suni (Neotragus moscatus)
9.3.7 Duiker, grey or common (Sylvicapra grimmia)
9.3.8 Klipspringer (Oreotragus oreotragus)
9.3.9 Oribi (Ourebi ourebi)
9.3.10 Steenbok (Raphicerus campestris)

9.4 Mega-herbivores
9.4.1 Elephant, savanna (L. africana africana) and forest (L. africana cyclotis)
9.4.2 Hippopotamus (Hippopotamus amphibius)
9.4.3 White or square-lipped rhinoceros (Ceratotherium simum)
9.4.4 Black or hook-lipped rhinoceros (Diceros bicornis)

9.5 Wild pigs
9.5.1 Warthog (Phacochoerus aethiopicus) and bushpig (Potamochoerus porcus)

9.6 Carnivores
9.6.1 Introduction
9.6.2 Drugs and drug mixtures used
9.6.3 Characteristics of cyclohexylamine immobilization
9.7 The immobilization of large felids 241
 9.7.1 Lion (Panthera leo) 241
 9.7.2 Leopard (Panthera pardus) 244
 9.7.3 Cheetah (Acinonyx jubatus) 247

9.8 Small felids 248
 Caracal (Caracal caracal), serval (Leptailurus serval), African wild cat (Felis silvestris), small spotted cat (Felis nigripes)

9.9 Viverrids and mustelids 250
 Large- and small-spotted genet (Genetta tigrina and Genetta genetta), mongoose, civet (Civettictis civetta), African clawless otter (Aonyx capensis), honey badger (Mellivora capensis), striped polecat (Ictonyx striatus)

9.10 Canids 251
 Side-striped jackal (Canis adustos), black-backed jackal (Canis mesomelas), wild dog (Lycaon pictus)

9.11 Hyenids 253
 Aardwolf (Proteles cristatus), brown hyena (Parahyaena brunnea), spotted hyena (Crocuta crocuta)

9.12 Primates 254
 Vervet monkey (Cercopithecus aethiops), samango monkey (Cercopithecus mitis), chacma baboon (Papio ursinus), mandrill (Mandrillus sphinx)

9.13 Reptiles and amphibians 257
 9.13.1 General 257
 9.13.2 Snakes 257
 9.13.3 Chelonians 258
 9.13.4 Crocodilians 258

9.14 Birds 261
 9.14.1 General 261
 9.14.2 Ostriches 262

Selected references for primate, reptile and bird anaesthesia 264

CHAPTER 10 DRUG-INJECTING EQUIPMENT 265
 10.1 Syringes and needles 265
 10.1.1 Syringes 265
 10.1.2 Needle selection 266
 10.1.3 Syringe filling procedure 267
 10.2 Pole syringe 268
 10.3 Equipment sterility 270
 10.4 Blow pipes and powered blow pipes 270

CHAPTER 11 BALLISTICS AND PROJECTILE DARTING SYSTEMS 271
 11.1 Important concepts in darting 271
 11.1.1 Ballistics 271
 11.1.2 Dart impact comparison 271
 DART SYSTEMS AND CONCEPTS 272
 11.2 Tailpieces and needles: an overview 272
 11.2.1 Tailpieces 272
 11.2.2 Needles 273
 11.3 Non-pressurized and pressurized dart syringes 275
 11.4 Cap-Chur® syringes 275
 11.4.1 Instructions for use of Cap-Chur dart syringes 276
 11.5 Pneu-Dart® syringes 278
 11.6 Dist-Inject® syringes 279
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.7</td>
<td>Dan-Inject® and Telinject® syringes</td>
</tr>
<tr>
<td>11.8</td>
<td>Pax-Arms® syringes</td>
</tr>
<tr>
<td>11.9</td>
<td>Tele-Dart® syringes</td>
</tr>
<tr>
<td>11.10</td>
<td>Kruger National Park darts</td>
</tr>
<tr>
<td>11.11</td>
<td>Transmitter darts</td>
</tr>
<tr>
<td>11.12</td>
<td>Alternative dart designs</td>
</tr>
<tr>
<td>11.12.1</td>
<td>Eco-Dart® syringes</td>
</tr>
<tr>
<td>11.12.2</td>
<td>Professional Wildlife Equipment (PWE)</td>
</tr>
<tr>
<td>11.12.3</td>
<td>Home-made darts</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 12 DART PROJECTORS |

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Palmer Cap-Chur® equipment</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Cap-Chur® short-range CO₂ dart projector</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Cap-Chur® long-range CO₂ dart projector</td>
</tr>
<tr>
<td>12.1.3</td>
<td>Cap-Chur® extra-long-range dart projector</td>
</tr>
<tr>
<td>12.2</td>
<td>Pneu-Dart® equipment</td>
</tr>
<tr>
<td>12.3</td>
<td>Dist-Inject® equipment</td>
</tr>
<tr>
<td>12.4</td>
<td>Dan-Inject® equipment</td>
</tr>
<tr>
<td>12.5</td>
<td>Telinject® equipment</td>
</tr>
<tr>
<td>12.6</td>
<td>Pax-Arms® equipment</td>
</tr>
<tr>
<td>12.7</td>
<td>Tele-Dart® equipment</td>
</tr>
<tr>
<td>12.8</td>
<td>Additional information and innovations</td>
</tr>
<tr>
<td>12.8.1</td>
<td>Adjusting power</td>
</tr>
<tr>
<td>12.8.2</td>
<td>Sights and scopes</td>
</tr>
<tr>
<td>12.9</td>
<td>Additional information and comments on dart gun systems</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 13 OTHER RESTRAINT TOOLS |

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Net gun</td>
</tr>
<tr>
<td>13.2</td>
<td>Ropes, hobbles and tape</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Ropes</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Hobbles</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Tape</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Slinging straps</td>
</tr>
<tr>
<td>13.3</td>
<td>Catch poles and nets</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Catch pole and grasp</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Nets</td>
</tr>
<tr>
<td>13.4</td>
<td>Traps, cages and leg holds</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 14 ANCILLARY TREATMENTS IN WILDLIFE CAPTURE AND CARE |

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Stress and shock</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Clinical signs of shock</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Treatment</td>
</tr>
<tr>
<td>14.2</td>
<td>Capture myopathy ‘over straining disease’</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Treatment</td>
</tr>
<tr>
<td>14.3</td>
<td>Hyperthermia</td>
</tr>
</tbody>
</table>

References |
14.4 Bloat and regurgitation 314
14.5 Care of eyes 315
14.6 Parasitism 316
14.7 Local and/or systemic disease 316

CHAPTER 15 OVERVIEW OF CAPTURE METHODS AND TRANSPORT OF WILD ANIMALS 319

15.1 Factors affecting success of capture 320
 15.1.1 Condition of animal 320
 15.1.2 Age 320
 15.1.3 Ambient temperature 320
 15.1.4 Physical terrain 320
 15.1.5 Boma siting 320
 15.1.6 Time of capture 321
 15.1.7 Human contact 321
 15.1.8 Timing of capture and control of animals 321
 15.1.9 Equipment 321
 15.1.10 Disturbance 321
 15.1.11 Provision of food and water 321
 15.1.12 Delays 322
 15.1.13 Mixing species 322
 15.1.14 Driving animals across territorial boundaries 322
 15.1.15 Crowding 322
 15.1.16 Transport containers 323
 15.1.17 Unloading 323

15.2 Methods of capture 323
 15.2.1 Capture by darting 323
 15.2.2 Mass capture using the plastic boma 324
 15.2.3 Net bomas 325
 15.2.4 Net lines 325
 15.2.5 Bull dogging 326
 15.2.6 Drop or pop-up boma 326
 15.2.7 Net gun 326
 15.2.8 Cage traps 326
 15.2.9 Additional restraint measures 327

15.3 Transportation of game 327
 15.3.1 Guidelines 327
 15.3.2 Crates 328
 15.3.3 Transport vehicles 328
 15.3.4 Management during loading and transportation 329

CHAPTER 16 POST-CAPTURE BOMA MANAGEMENT 331

16.1 Bomas: siting and construction 332
16.2 Management of stress 334
16.3 Nutrition 334
16.4 General boma management 335
16.5 Disease prevention and surveillance 336

References 337
CHAPTER 17 NECROPSY TECHNIQUES 339

17.1 General rules of necropsy 340
17.2 Basic techniques 340
References 346
Necropsy form 347
Appendix 17.1: Necropsy procedure for birds 348
Appendix 17.2: Necropsy procedure for reptiles 349

CHAPTER 18 NOTES ON DEVELOPING AN IMMOBILIZING KIT FOR THE FIELD AND THE INCLUSION OF DATA SHEETS 351

18.1 Specific items 351
 18.1.1 Tackle or toolbox 351
 18.1.2 Syringes 352
 18.1.3 Needles 352
18.2 Essential drugs 353
 18.2.1 Example of essential drug list for immobilizing ungulates 353
 18.2.2 Miscellaneous drugs 354
18.3 Other medical and practical equipment 355
 18.3.1 Selection of darts and appropriate needles 355
 18.3.2 Ancillary equipment for use with a dart gun 356
 18.3.3 Transport cases 356
 18.3.4 Other equipment 356
18.4 Examples of capture sheets used in the field 357
 18.4.1 South African National Parks 357
 18.4.2 Wildlife Conservation Society Field Veterinary Programme 358
 18.4.3 Wildlife Unit, Department Of Veterinary Services, Zimbabwe 359

APPENDIX 1 IMPORTANT CONTACTS – ADDRESSES, E-MAIL AND WEBSITES 361

APPENDIX 2 ZIMBABWE’S COURSE ON THE CHEMICAL AND PHYSICAL CAPTURE OF WILD ANIMALS 374

INDEX 375